


forecasts to be consistent with both uncertainties. KUH thus enables models of aggregate 
outcomes that 1) are premised on market participants’ rationality, and 2) yet accord a role to both 
fundamental and psychological (and other non-fundamental) factors in driving outcomes. The 
paper also suggests how a KUH model’s quantitative predictions can be confronted with time-
series data.  

JEL Codes: C02, C51, E00, D84, E00, G41  

Keywords: Unforeseeable Change; Knightian Uncertainty; Muth’s Hypothesis; Model 
Ambiguity; REH; Behavioral Finance  

 

 

 

 

 

 



1 Introduction and Overview

In his classic book Risk, Uncertainty, and Profit, Frank Knight introduced a distinc-
tion between measurable uncertainty, which he called “risk,” and “true uncertainty,”
which cannot “by any method be reduced to an objective, quantitatively determined
probability” (Knight, 1921, p. 321). Knight argued that “true uncertainty” arises
from change that cannot be fully foreseen with probabilistic rules and whose conse-
quences for market outcomes, and thus payoffs from market participants’ decisions,
cannot be fully comprehended – even in hindsight. For Knight, recognizing such
unforeseeable change is the key to understanding profit-seeking activity in real-
world markets.

The rational expectations hypothesis (REH) and behavioral finance are widely
considered to have been the milestones in the development of models of aggre-
gate outcomes, resulting from market participants’ decisions, since the 1970s.1 Al-
though they differ in essential respects, the REH and behavioral-finance approaches
share a key feature: their models specify aggregate outcomes with a stochastic
process.2 By design, these models assume that economists do not face Knight-
ian uncertainty. By contrast, the Knightian uncertainty hypothesis (KUH) proposed
here enables economists to build models that acknowledge their own Knightian un-
certainty stemming from unforeseeable change in the process driving outcomes.

Recognizing uncertainty that cannot be represented with standard probabilis-
tic measures of risk is increasingly viewed as crucial to remedying shortcomings
of macroeconomic and finance theory. For example, in his Nobel lecture, Hansen
(2013, p. 399, emphasis added) argues that REH models “miss something essen-
tial: uncertainty [arising from] ambiguity about which is the correct model” of the
process driving aggregate outcomes.

Following a pioneering contribution by Hansen and Sargent (2008), a number
of recent papers build macroeconomic models that recognize ambiguity on the part

1Lucas’s (1972a,b) early contributions are usually cited as pioneering the application of REH to
macroeconomic theory. For authoritative surveys of the behavioral-finance approach, see Shleifer
(2000) and Barberis and Thaler (2003).

2Akerlof and Shiller (2009) is a notable exception in behavioral-finance literature. They rely on
a narrative mode of analysis, and thus ipso facto



of market participants. Although such models relate aggregate outcomes to partici-
pants’ demand and supply decisions, they represent these outcomes with a stochas-
tic process. They typically do not relate ambiguity to unforeseeable change in the
processes driving outcomes.

In a significant departure from this literature, Ilut and Schneider (2014) open
the New Keynesian (NK) model to unforeseeable change in the process driving the
model’s exogenous variable – total factor productivity (TFP). However, Ilut and
Schneider constrain precisely – with a probabilistic rule – their model’s representa-
tion of participants’ forecasts of TFP and how these forecasts drive aggregate out-
comes (for example, hours worked and the inflation rate). As a result, they represent
how aggregate outcomes unfold over time with a stochastic process, thereby assum-
ing that, unlike participants, economists do not face ambiguity about the process
driving these outcomes.

In this paper, we propose a new approach to building models of aggregate out-
comes that removes this incongruity from macroeconomic and finance theory. Our
approach, which we call the Knightian Uncertainty Hypothesis (KUH), recognizes
that, like market participants, economists also face Knightian uncertainty and the
ambiguity that such uncertainty engenders.

Like REH and behavioral finance, a KUH model represents the process driving
outcomes at a point in time with a stochastic process. However, in contrast to
these approaches, KUH rests on a novel mathematical framework that formalizes
both measurable and Knightian uncertainty about the process driving aggregate





predictions of them presumes ex ante that participants will ignore forecast errors,
thereby foregoing profit opportunities time and again over an indefinite future. As
Lucas recounts in his Nobel lecture (1995, p. 255), the implication that inconsis-
tent models presume participants’ irrationality played a crucial role in persuading
macroeconomists to embrace REH.6

REH implements Muth’s hypothesis in models representing outcomes with a
stochastic process. Although doing so eliminates irrationality, it also fully con-
strains an REH model’s representation of participants’ forecasts. Thus, once an





pothesis – the core idea underpinning the REH approach – and the compelling evi-
dence that non-fundamental factors, such as market sentiment, exert an autonomous
influence on participants’ forecasts, especially in asset markets.11 As in REH mod-
els, imposing consistency within a KUH model relates participants’ forecasts of
aggregate outcomes to fundamentals. Remarkably, Muth’s hypothesis also plays a
central role in representing the influence of psychological and other non-fundamental
factors on how participants’ forecast outcomes in terms of fundamentals.12



from the narrative market reports.13

The plan of the paper is as follows. Sections 2-4 explain and formally present
the mathematical framework that underpins the KUH approach. We characterize
Knightian uncertainty in a prototype intertemporal model and define the predic-
tions of the model’s exogenous and endogenous variables. Relying on these pre-
dictions, Sections 5-6 show how KUH applies Muth’s hypothesis to represent, in
terms of fundamental factors, participants’ forecasts and aggregate outcomes un-
der Knightian uncertainty. In Section 7, we show how a KUH model represents
the autonomous role played by market participants’ forecasts in driving outcomes.
Section 8 provides two formal examples of how a KUH model represents the au-
tonomous influence of market sentiment on participants’ forecasts without presum-
ing that participants forego profit opportunities. In Section 9, we sketch how the
existing econometric methodology, including calibration, can be adapted to con-
front KUH models with time-series data, and we illustrate this methodology in as-
sessing the adequacy of the predictions of a simple model for stock prices. Section
10 concludes the paper. Appendix A contains mathematical proofs of the theorems
and lemmas presented in the paper. Appendix B describes the data and presents the
details of our calibration methodology and econometric specifications, as well as
graphs and tables of the results.

2 Characterizing Knightian Uncertainty

Macroeconomic and finance models are intertemporal in the sense that they assume
that aggregate outcomes, such as the inflation rate and the stock price, are driven
at each point in time by market participants’ forecasts of these outcomes’ future
values. Regardless of the context, in order for the intertemporal representation of
an aggregate outcome to generate implications for time-series data, an economist
must represent participants’ forecasts in terms of some exogenous variables – for
examplesent- 108 181.95acterize



productivity in a New Keynesian macroeconomic model.14

In order to present how the KUH approach formalizes both risk and Knightian
uncertainty, we consider a variable, denoted by xt, which we refer to as corporate
earnings in the following. We formalize “risk” in the process driving earnings with
a standard stochastic specification at a point in time. Importantly, we formalize the
Knightian uncertainty faced by an economist by allowing the specification of the
process driving earnings to undergo change at times and in ways that cannot be
represented ex ante with a probabilistic rule such as Markov switching.

To focus on the key features of KUH’s mathematical framework, we employ
a particularly simple specification of the earnings process. We assume that log-
earnings follow a random walk with time-varying drift coefficients:

∆ log xt = µt + "x,t, (1)

for t = 1, 2, . . ., and where {µt}t=1,2,... is a sequence of deterministic constants and
"x,t are independent over time with mean zero and variance σ2

x.
The conditional moments of the probability distribution of the stochastic inno-

vation "x,t, particularly its variance, represents (probabilistic) risk. Recognizing
that an economist faces Knightian uncertainty about the process driving earnings,
KUH does not specify a stochastic process for how the drift coefficient, µt, unfolds
over time. Instead, KUH hypothesizes that such change can be characterized with
ex ante conditions that constrain the values of µt to unfold between upper and lower
bounds.15

Specifically, at any time t, we constrain the coefficients,
!

µt+k

"
k=1,2,...

, to take
any value within time-varying intervals, which depend on these coefficients’ values
at t or earlier. We denote these intervals as follows:

µt+k 2 Iµ
t:t+k =

#



U . We write that µ



where the end-points of the interval Ix
t:t+k in (4) are given by

Lx
t:t+k = xt exp(

k%
j=1

"x,t+j) exp(
k%

j=1

Lµ
t:t+j), (5)

Ux
t:t+k = xt exp(

k%
j=1

"x,t+j) exp(
k%

j=1

Uµ
t:t+j). (6)

This specifies the probability distribution in terms of {"x,t+j}j=1,2,..,k conditional on
xt and for the given time-t value of µt.

The specification in (5)-(6) of the end-points of the stochastic intervals within
which xt+k lies, when viewed from time t, defines a family of the time-t conditional
probability distributions, one of which represents earnings at t+k, according to the
model. However, recognizing that an economist faces Knightian uncertainty, KUH
does not specify at time t which of these distributions represents xt+k. Because this
ambiguity about the correct representation of the processes driving a KUH model’s
variables arises from unforeseeable change in these processes, we refer to the speci-
fications of the stochastic intervals in (5)-(6) as a time-t Knightian uncertainty (KU)
characterization of xt+k.

2.1 Knightian Uncertainty Constraints
The KU characterization in (5)-(6) depends on the specifications of the KU con-
straints that an economist chooses ex ante to represent the extent of unforeseeable
change in the drift coefficient

!
µt+j

"
j=1,2,...,k

. As with any economic model, an
economist would constrain change in a KUH model’s coefficients on the basis of



by:

µt+1 2 Iµ
t:t+1 = [Lµ

t:t+1, Uµ
t:t+1] = [µ− + ρµ

&
µt − µ−

'
, µ+ + ρµ

&
µt − µ+

'
], (7)

where µ− < µ+, 0 ≤ ρµ < 1 and the initial condition is µ− ≤ µ1 ≤ µ+.

Assumption 1 neither imposes conditions on exactly how µt will unfold over
time nor specifies a probabilistic rule to determine which value the coefficient µt+1

will take within the interval Iµ
t:t+1. However, the condition (7) specifies the end-

points of this interval in terms of the lower and upper bounds, µ− and µ+, respec-
tively, and an autoregressive parameter, ρµ.

The key implication of the KU constraint in (7) is that, when viewed from time
t, Knightian uncertainty about µt at any any



as j !1, Knightian uncertainty about µt+j converges to
#
µ−, µ+

$
.17

By assuming that the evolution of the drift parameter depends on its history,
and that ascertaining its range of possible values becomes increasingly difficult at a
more distant horizon, the constraint in (8) provides a plausible and tractable way to
characterize Knightian uncertainty in a variety of economic contexts. Because this
constraint is specified in terms of a parsimonious set of parameters, a calibration
methodology can be used to assess its relevance, thereby confronting a KUH model
with time-series data.18

Section 9 presents an example of a quantitative calibration of our prototype
model of the stock price on the basis of data for earnings, dividends, and stock prices



Lemma 2



though, for the sake of concreteness, we refer to the representation in (13) as “a
no-arbitrage condition” and to the variables pt and dt as the “the stock price” and
“dividends,” our objective in this paper is not to present a fully developed KUH
model of the stock price that would enable us to reexamine Shiller’s findings re-
garding the adequacy of the present-value model under Knightian uncertainty.

We set the discount factor to a constant and make other simplifying assumptions



define the model’s predictions of dividends and prices.

4.1 Characterizing Knightian Uncertainty in the Relationship
Between Dividends and Earnings

As in REH models, in order to derive the model-implied relationship between the
stock price and earnings, we first relate dividends to earnings. Here, we specify a
linear relationship between dividends dt and earnings xt, according to which the im-
pact of earnings on dividends is given by a sequence of time-varying deterministic
coefficients {bt}t=1,2,...,

dt = btxt + "d,t, (14)

where "d,t are independent over time with mean zero and variance σ2
d. Moreover,

we allow bt to undergo unforeseeable change, but, analogously to (2), we constrain
the coefficients {bt}t=1,2,..., to take any value within time-varying intervals:

Ib
t:t+k =

#
Lb

t:t+k, U b
t:t+k

$
. (15)

Analogously to the argument leading to the Theorem 1’s characterization of KU in
the earnings process, the specifications in (1) and (14) imply that dividends at time
t + k are given by:

dt+k = xtbt+k exp(
k%

j=1

"x,t+j) exp(
k%

j=1

µt+j) + "d,t+k. (16)

When viewed from time t, the representation in (16) specifies dividends at any fu-
ture time t + k, dt+k, in terms of (i) earnings at time t, xt, (ii) the sequence of
i.i.d. stochastic innovations,{"x,t+j} j

j





Assumption 2 Given the value bt, bt+1 can take any value within the interval given
by

bt+1 2 Ib
t:t+1 = [Lb

t:t+1, U b
t:t+1] = [b− + ρb (bt − b−) , b+ + ρb (bt − b+)] , (20)

where b− < b+, 0 ≤ ρb < 1 and the initial condition is b− ≤ b1 ≤ b+.

Analogously to Lemma 1, the following lemma specifies the KU constraint for
bt+j , for j ≥ 1.

Lemma 3 The KU constraint (20) implies that viewed from time t, for j ≥ 1,

bt+j 2 Ib
t:t+j =

#
Lb

t:t+j, U b
t:t+j

$
, (21)

Lb
t:t+j = b− + ρj

b (bt − b−) , and U b
t:t+j = b+ + ρj

b (bt − b+) , (22)

and that the end-points of the intervals satisfy the following intertemporal monotonic-
ity property:

Lb
t:t+j+1 ≤ Lb

t+1:t+j+1 and U b
t:t+j+1 ≥ U b

t+1:t+j+1, (23)

where b+ > b− and 0 ≤ ρj
b < 0.

If b_ > 0, then Assumption 2 formalizes the qualitative regularity that earn-
ings have a non-negative impact on dividends at all points in time. Although the
condition (21) does not specify a particular value that bt+j will take at t + j, this
condition does constrain the value of bt+j to lie within the interval, Ib

t:t+j , when
viewed from time t.25 The following lemma states the implication of this constraint
for the parametric specification of Knightian uncertainty in the dividend process:

Lemma 4 Lemmas 2 and 3 specify the end-points of the stochastic interval, in (17)
within which dt+k lies, when viewed from time-t, in terms of µt, bt and a set of

25As its counterpart for µt+j in (8), the KU constraint in (21) seems plausible in representing a
time-varying relationship between dividends and earnings. In Section 9, we provide some empirical
support for this condition on the basis of data for companies included in the S&P 500 stock index.
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exogenously fixed parameters (µ−, µ+, ρµ, b−, b+, ρb) :

Ld
t:t+k = xtL

b
t:t+k exp(

k%
j=1

"x,t+j) exp(
k%

j=1

Lµ
t:t+j) + "d,t+k, (24)

Ud
t:t+k = xtU

b
t:t+k exp(

k%
j=1

"x,t+j) exp(
k%

j=1

Uµ
t:t+j) + "d,t+k, (25)

where Lb
t:t+k, U b

t:t+k, Lµ
t:t+j, and Uµ

t:t+j are given in (22) and (8) respectively.

4.3 The Knightian Uncertainty Expectation of Dividends
Lemma 4 shows how the KU characterization of xt+k, in (11) and (12) enables us to
characterize the Knightian uncertainty in dt+k. The model-implied representations,



where v = E exp ("x,t) and

ld
t:t+k =

&
b− + ρk

b (bt − b−)
'

exp(
k%

j=1

(µ− + ρj
µ(µt − µ−))), (28)

ud
t:t+k =

&
b+ + ρk

b (bt − b+)
'

exp(
k%

j=1

(µ+ + ρj
µ(µt − µ+))). (29)

The interval KEt (dt+k) in (27) represents the time-t prediction of the range of
values within which dividends are expected to lie at t + k in terms of xt, µt, bt,, the
set of exogenously fixed KU parameters, (µ−, µ+, ρµ, b−, b+, ρb), and the moments
of the innovation, "x,t.

Note that if we consider the conditional expectation of dt given xt there is no
role for Knightian uncertainty in how dividends unfold over time. But we can for-
mally define the Knightian expectation as the point (a degenerate interval) given
by,

KEt (dt) = Et (dt) = btxt.

4.3.1 Iterated Knightian Uncertainty Expectations

The analysis of the implications of the no-arbitrage condition in (13), involves iter-
ations of KE, such as KEt (KEt+1(dt+2)). This involves two (or more) iterations.
First, as discussed above, KEt+1(dt+2)



constraints in (8) and (21) that:

KEt (dt) = btxt, (30)

KEt (dt+k) = xt[L
b
t:t+kvk exp(

k%
j=1

Lµ
t:t+j), U b

t:t+kvk exp(
k%

j=1

Uµ
t:t+j)], (31)

where v = E exp ("x,t), and Lb
t:t+



was a “sensible” way to acknowledge participants’ rationality – that their forecasts
are related to “the way the economy works.” That, after all, is precisely what an
economist hypothesizes and formalizes with his own model.

Relying on this premise, Lucas (1995, p. 254-255) argued that Muth’s hypoth-
esis should be considered “the principle” of coherent model building in macroeco-
nomic and finance theory. He pointed out that when an economist relates partic-
ipants’ forecasts to how “the economy works” in a way that is inconsistent with
the predictions of his own model, he contradicts his model’s hypothesis: that it
represents how outcomes actually unfold over time.

By imposing consistency within an intertemporal model, REH removed the
“glaring” inconsistency that characterized the intertemporal macroeconomic mod-
els of the 1960s. Analogously, KUH relies on Muth’s hypothesis to construct co-
herent models that recognize that not only market participants, but economists as
well, face Knightian uncertainty about the process driving outcomes.

5.1 REH’s Implementation of Muth’s Hypothesis
In order to highlight the main distinctive features of KUH’s application of Muth’s
hypothesis, we first briefly consider REH’s application of the hypothesis in the
context of the specifications of earnings and dividends in (1) and (14).

Constraining µ+ = µ− = µ and b+ = b− = b, in (7) and (20), formalizes
the assumption that the processes driving earnings and dividends do not undergo
unforeseeable change, thereby reducing our KUH prototype to its REH counterpart.

As we next illustrate formally, REH’s application of Muth’s hypothesis about
how economists’ models can recognize that participants rely on rational considera-
tions has a crucial implication: the conditional expectation of an economist’s own
stochastic specification of dividends represents precisely how every market partici-
pant understands and forecasts dividends.

To this end, we let F i
t (dt+k) and F j

t (dt+k) denote the values of the forecasts of
dt+k selected by any two market participants, say i and j. The REH version of our
prototype represents the time-t forecasts of dividends by every participant, as well
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as the market, at any t + k for k ≥ 1 and for any (participants) i and j as follows:

F i
t (dt+k) = F j

t (dt+k) = Ft(dt+k) = 'xt, (33)

where Ft(dt+k) denotes the value of the market’s (an aggregate of its participants)
forecast, and

' = vkb exp (kµ) . (34)

Remark 2 The representation in (34) illustrates the key implication of assuming
that the process driving outcomes, such as dividends, does not undergo unforesee-
able change. Applying Muth’s hypothesis in such models, as REH does, constrains
representations of participants’ forecasts of dividends at each t + k, dt+k, to be
uniform, in the sense that every market participant is assumed to select exactly the
same quantitative forecast of dividends in making his demand and supply decisions.
Moreover, REH fully determines the singular representation of the so-called “rep-
resentative agent’s” forecasts in terms of the model’s coefficients, (b, µ) and the
moments of its stochastic innovations, v.

5.2 Relating Participants’ Forecasts of Dividends to Earnings
under Knightian Uncertainty



the model does not represent how participants forecast these outcomes with a sto-
chastic process. Applying Muth’s hypothesis in a KUH model thus represents that
market participants also understand that the process driving outcomes undergoes
unforeseeable change.

To demonstrate this formally, we show how our KUH prototype represents par-
ticipants’ forecasts of dividends in terms of earnings. The KE expectation in (31)
specifies the interval within which dt+k is expected to lie, according to the KU char-
acterization of dividends in (24)-(25). Applying Muth’s hypothesis, we represent
the value of the ith participant’s time-t forecast of dt+k to be one of the points within
the KE interval in (31):

F i
t (dt+k) = 'i

t:t+kxt 2 KEt (dt+k) . (35)

The expression for KEt (dt+k) in (31) implies that, according to the model, the
interval, I'

t:t+k, within which 'i lies is given by

'i
t:t+k 2 I'

t:t+k =
#
L'

t:t+k, U'
t:t+k

$
= vk

#
ld
t:t+k, ud

t:t+k

$
, (36)

where ld
t:t+k and ud

t:t+k are specified in (28) and (29).
The representation in (35)-(36) formalizes the idea that recognizing that an

economist faces Knightian uncertainty means that his model does not determine
completely which particular value of F i

t (dt+k) a market participant will select at
time t.27 However, although Muth’s hypothesis neither determines the particular
values that the coefficients 'i

t:t+k in (36) take for any i, nor restricts these coeffi-
cients to be the same for all i, the hypothesis does constrain the values of all 'i

t:t+ks
to lie within the interval I'

t:t+k, in (36). Denoting an aggregate of 'i
t:t+ks by 't:t+k,

and the corresponding aggregate of F i
t (dt+1) by Ft (dt+1)), we formally state this:

Ft (dt+k) = 't:t+kxt, (37)
27If an economist were to specify a probabilistic rule that would enable him to represent which

specific value F i
t (dt+k) takes within the interval KEt (dt+k), in (35), he would be able to represent

aggregate outcomes with a stochastic process, thereby assuming that he does not face Knightian
uncertainty. For an example of such an approach and further discussion, see Ilut and Scheider
(2014).
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where 't:t+k 2 I'
t:t+k =

#
L'

t:t+k, U'
t:t+k

$
, and the model does not specify the partic-

ular value that 't:t+k takes within the interval I'
t:t+k.

Herein lies the true significance of Muth’s hypothesis for macroeconomics and
finance theory, as well as macroeconometrics under Knightian uncertainty. Once
an economist recognizes that the process driving aggregate outcomes undergoes
unforeseeable change, he faces ambiguity about the precise values of the forecasts
that underpin rational participants’ decisions. However, because KUH character-
izes Knightian uncertainty with ex ante constraints on the extent of unforeseeable
change, applying Muth’s hypothesis in the model enables an economist to impose
bounds on his ambiguity about these values.

As we show in the remainder of this paper, such bounds on representations of
participants’ forecasts of dividends are essential to a KUH model’s derivation of



in (38) summarizes how market participants’ demand and supply decisions – made
on the basis of the specific values of their forecasts of dividends and prices, as
aggregated by Ft (dt+1) and Ft (pt+1) – set the value of pt . However, recognizing
Knightian uncertainty on the part of an economist, a KUH model does not specify
the particular value of the market’s quantitative forecast, Ft (dt+1). Instead, from
(37), the model represents this forecast to lie in the interval, that is, Ft (dt+1) 2
KEt (dt+1



Moreover, Ip
t is given by,

Ip
t =

1%
k=1

γkKEt (dt+k) = xt [Lp
t , Up

t ] , (41)

where

Lp
t =

1%
k=1

γkvkLb
t:t+k exp(

k%
j=1

Lµ
t:t+j), (42)

Up
t =

1%
k=1

γkvkU b
t:t+k exp(

k%
j=1

Uµ
t:t+j), (43)

and the model-implied bounds Lb
t:t+k, U b

t:t+k, Lµ
t:t+j , and Uµ

t:t+j are specified in (9)
and (22).

Remark 3 In the special case in which ρµ = ρb = 0, in (9) and (22), the Knightian
uncertainty about future bt+k and µt+k



for pt



by the market at t + 1 is expected at time t to lie:

F i
t (pt+1) 2 KEt

&
Ip

t+1

'
.

Denoting by Ft (pt+1) the market’s (aggregate) forecast of pt+1, the expressions for
KEt (pt+1) in (46)-(48) imply that, according to the model,

Ft (pt+1) = φtxt, (49)

where φt 2 Iφ
t = [Lφ

t , Uφ
t ].

7 How Fundamentals Drive Stock Prices: An Autonomous Role
for Participants’ Forecasts

We have shown that imposing consistency within a KUH model, in contrast to doing
so within its REH counterpart, does not fully constrain representations of partici-
pants’ forecasts of dividends and prices. In this sense, a KUH model formalizes
the idea that participants’ forecasts play an autonomous role in driving aggregate
outcomes, such as the stock price. To present this point formally, we note that by
Theorem 3, the no-arbitrage condition in (38), implies that

pt 2 Ip
t = γ(KEt (dt+1) + KEt

&
Ip

t+1

'
). (50)

Thus, the model represents the price actually set by the market to be one of the
points within the interval Ip

t . Moreover, although the model does not specify the
particular value that pt takes, it does assume that this price satisfies the intertemporal
relationship pt = γ (Ft (dt+1) + Ft (pt+1)). Using the representation of Ft (dt+1),
in (37) for k = 1, and the representation of Ft (pt+1) , in (49), we can formally
write pt as follows:

pt = γ('t + φt)xt, (51)

where 't 2 I'
t:t+1 =

#
L'

t:t+1, U'
t:t+1

$
and φt 2 Iφ

t =
*
Lφ

t , Uφ
t

+

tφφptt#:*I



Recognizing that an economist’s faces Knightian uncertainty, KUH does not
represent the precise values that 't and φt, and thus Ft (dt+1) and Ft (pt+1), take
within their respective intervals. Thereby, KUH implies that an economist faces
ambiguity about how rational participants forecasts drive their demand and supply
decisions, which, in turn, result in the price pt set by the market at t. This am-
biguity – that an economist’s model does not fully constrain its representations of
participants’ forecasts – is just another way of stating that these forecasts play an
autonomous role in how the model represents the price at t, pt.

The autonomy of participants’ forecasts in setting the stock price at a point in
time implies that participants’ revisions of their forecasts play an autonomous role
in driving the movements of aggregate outcomes, such as the stock price, over time.
Using (51), we state this formally as follows using (51):

∆pt = γ ('t + φt) ∆xt + γ (∆'t + ∆φt) xt−1, (52)

where ∆pt = pt−pt−1. The term γ ('t + φt) ∆xt represents the effect of the change
in earnings on stock prices between t− 1 and t, while the term γ (∆'t + ∆φt) xt−1

represents the effect of the change in the coefficients, which may depend on other
factors (for example, market sentiment) on how participants forecast dividends and
prices between these periods as illustrated in the next sections.

8 Reconciling Model Consistency with Behavioral Evidence

Imposing consistency within a KUH model relates participants’ forecasts of ag-
gregate outcomes to fundamentals. By reconciling Muth’s hypothesis with the
autonomy of participants’ forecasts, KUH opens a way to build macroeconomic
and finance models that represent the influence of psychological and other non-
fundamental considerations on how participants forecast outcomes in terms of fun-
damentals, and thus aggregate outcomes, without presuming that participants are
irrational.

Remark 6 As we mentioned in the Introduction, we follow the convention in refer-
ring to "fundamental" and "non-fundamental" factors as exogenous variables that,
respectively, an economist includes and does not include in his specification of div-
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factors on participants’ forecasts of dividends and stock prices with mathematical
conditions that constrain the model-consistent intervals of the model’s representa-
tions of these forecasts.

To this end, we define an exogenous variable, st, which, for the sake of con-
creteness, we refer to as an aggregate of market participants’ sentiment about the
future course of corporate earnings, dividends, and/or stock prices. We specify st

to take three discrete values, which we refer to as the state of this market sentiment:

st =

,
-.

-/

1



parts:
Ft(dt+1) = 'rehxt, and Ft(pt+1) = φrehxt, (54)

where, from (1), (33), and (44):

'reh = vb exp (µ) , and φreh = bγ(v exp(µ))2

1−γv exp(µ)
. (55)

Having represented their empirical findings with models that rule out unforesee-
able change in how market sentiment influences participants’ forecasts, behavioral-
finance theorists have had no option but to represent these forecasts with incon-
sistent models. A particularly simple example of such a representation hypothe-
sizes that, conditional on the time-t



represented with a probabilistic rule, such as Markov switching.30

Thus the representations in (56) and (57) presume that when participants are
optimistic (pessimistic), they necessarily forego profit opportunities. In the next
section, we formulate a KUH analog of the behavioral-finance representation in (56)
and (57). We show how recognizing that an economist faces Knightian uncertainty
enables him to represent the diverse, autonomous influences of market sentiment
on participants’ forecasts, and thus on stock prices, in a way that does not presume
that, when they are optimistic (pessimistic) they forego profit opportunities.

8.4 KUH: Representing the Role of Market Sentiment in Con-
sistent Models

As we summarized in Remark 8, behavioral-finance models suffer from theoretical
and (likely) empirical difficulties, owing to their assumption that neither economists
nor market participants face Knightian uncertainty. However, the idea underpin-
ning Barberis et al.’s. (1998) behavioral-finance constraints in (56) and (57) – that
optimism (pessimism) leads participants to select forecasts that tend to be higher
(lower) than those chosen when the market is in a neutral state – nonetheless seems
a sensible way to represent the influence of market sentiment on participants’ fore-
casts.

However, in contrast to REH models, applying Muth’s hypothesis in a KUH
model does not represent participants’ forecasts of dividends and prices with pre-
cise values. This opens a way to represent the influence of market sentiment (and
other non-fundamental factors) on participants’ forecasts as a constraint on the
model-consistent consistent KE intervals within which participants’ forecasts lie,
according to the model.

There are a number of ways to formulate an analog of the constraints in (56) and
(57) in a KUH model. Here, we present two examples of such representations.31

30These features characterize a seminal behavioral-finance model of the role of market sentiment
in driving stock prices by Barberis et al. (1998). They formulate the model for a “representative
investor” whose forecasts switch between two models of earnings, each inconsistent with an econo-
mist specification, according to a Markov switching rule.

31A more complete exposition of how KUH can represent the insights of behavioral finance in
consistent models, that is, without presuming that market participants are irrational, is beyond the
scope of this paper.
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8.4.1 Modifying Bounds for Representations of Participants’ Forecasts

We state the representations of optimism and pessimism as the following hypothe-
sis:

Hypothesis 1
(i)





confront the model’s predictions about the influence of sentiment on participants’
forecasts by assessing whether the time-series observations on pt actually lie within
the subintervals (66) and (67). In Section 9 and Appendix B.4, we illustrate how
this can be done using an econometric calibration methodology and the proxy for
market sentiment extracted from narrative market reports.

Remark 10 Representations in (66) and (67) highlight the essential role of Muth’s
hypothesis in building intertemporal models under Knightian uncertainty. Imposing
consistency within a KUH model enables an economist to represent and test the
influence of non-fundamental factors (market sentiment) on aggregate outcomes
(stock prices).

8.4.2 Market Sentiment in Participants’ Forecast Revisions

As we demonstrated in Section 6, although a KUH model generates quantitative
predictions about the interval within which the values of pt lie at a point in time,
conditional on xt, the model does not generate quantitative predictions about how



representations of participants’ forecasts are partly autonomous: they are not com-
pletely determined in terms of the model’s KU parameters,

&
µ−, µ+, ρµ, b−, b+, ρb

'
,

its coefficients at time t, µt and bt, and the moments of its stochastic innovations.

The autonomy of a KUH model’s representation of participants’ forecasts thus
reveals one of the key implications of recognizing an economist’s Knightian uncer-
tainty in an intertemporal model. For a consistent model to generate even qualitative
predictions of the co-movements in time-series data, an economist must appeal to
a non-fundamental factor and formalize its effect with constraints on the change in
the parameters of his model’s representation of participants’ forecasts.

Given 't−1 and φt−1, constraining ∆'t = 't − 't−1 and ∆φt = φt − φt−1 in-
volves constraining 't and φt to lie within the subintervals I'

t:t+1 and Iφ
t specified in

(31) and (46). Here, we consider a particularly simple example of such constraints:
optimistic (pessimistic) participants’ revisions of forecasts, in terms of earnings, are
represented by constraining ∆'t > 0 and ∆φt > 0 (∆'t < 0 and ∆φt < 0).

8.4.3 Representations of Participants’ Forecast Revisions

We next consider Hypothesis 2 given by:

Hypothesis 2
(i) If the market is optimistic at time t, that is, if st = 1, and 't−1 < U'

t:t+1 and
φt−1 < Uφ

t , then

'opt
t 2 [max('t−1, L'

t:t+1), U'
t:t+1], (68)

φopt
t 2 [max(φt−1, Lφ

t ), Uφ
t ]. (69)

(ii) If the market is pessimistic at time t, that is, if st = −1, and 't−1 > L'
t:t+1

and φt−1 > Lφ
t , then

'pes
t 2 [L'

t:t+1, min('t−1, U'
t:t+1)], (70)

φpes
t 2 [Lφ

t , min(φt−1, Uφ
t )]. (71)

We note that ('opt
t , 'pes

t , φopt
t , φpes

t ) lie within their respective model-consistent
intervals, if the constraints 't−1 < U'

t:t+1 and φt−1 < Uφ
t ('t−1 > L'

t:t+1 and
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φt−1 > Lφ
t ) hold. If these constraints are not satisfied, it is impossible that φt 2 Iφ

t

such that ∆φt > 0 when st = 1. Likewise for 't. The following lemma establishes
sufficient conditions for the constraints.

Lemma 5 If µt > µt−1, in (1) and bt > bt−1 in (14) the constraints 't−1 < U'
t:t+1

and φt−1 < Uφ
t in Hypothesis 2 are satisfied. Analogously if µt < µt−1 and bt <

bt−1, the constraints 't−1 > L'
t:t+1 and φt−1 > Lφ

t are satistfied.

Remark 12 Lemma 5 reveals the theoretical importance of behavioral finance’s
empirical findings that non-fundamental factors exert an autonomous, significant



We focus on our prototype’s quantitative predictions that stock prices lie within
the no-arbitrage intervals that depend on earnings. The details of our calibration
methodology, econometric specifications, graphs and tables of the results are pre-
sented in the Appendix B.

The core premise of KUH is that any fixed stochastic model eventually ceases to
approximate time-series data adequately, owing to unforeseeable structural change
in the process driving aggregate outcomes. While such change cannot be repre-
sented ex ante





But if Knight is correct in arguing that an inherent feature of profit seeking is
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Appendix (For online publication)

A Proofs of Lemmas and Theorems

Proof of Lemmas 1 and 3. Proof of (8) and (9): We give the proof of

µt+k ≥



that

dt+2≥Lb
t+1:t+2xt+1 exp

&
"x,t+2 + Lµ

t+1:t+2

'
+ "d,t+2

= Lb
t+1:t+2xt exp

&
"x,t+1 + Lµ

t:t+1

'
exp

&
"t+2 + Lµ

t+1:t+2

'
+ "d,t+2

≥xt exp(

20

j=1

"x,t+j)L
b
t:t+2 exp(

20

j=1

Lµ
t:t+j)

L



Similarly for the upper end-point. Collecting terms, we find,

KEt (KEt+1 (dt+2)) = KEt

&
E(Id

t+1:t+2

'

= xtv
2

#
bL,t:t+2 exp

&
µL,t:t+1 + µL,t:t+2

'
, bU,t:t+2 exp

&
µU,t:t+1 + µU,t:t+2

'$
.

The identity,
KEt (KEt+1 (dt+2)) = KEt (dt+2) ,

can be seen by using the monotonicity properties in (23),

dt+2 2 I



Hence the lower end-point of KEt

&
Ip

t+1

'
is given by,

10

i=1

γivi+1xtL
b
t:t+1+i exp(

i+10

j=1

Lµ
t:t+j).

Next, recall that KEt (dt+1) has the lower end-point,

vxtL
b
t:t+1 exp

&
Lµ

t:t+1

'
,

such that the lower end-point of the right hand side of (40) therefore is given by,

γ(vxtL
b
t:t+1 exp

&
Lµ

t:t+1

'
+

10

i=1

γivi+1xtL
b
t:t+1+i exp(

i+10

j=1

Lµ
t:t+j))

=
10

i=1

γivixtL
b
t:t+i exp(

i0

j=1

Lµ
t:t+j),

which is the lower end-point of Ip
t as desired. Similarly for the upper end-point

which proves the claimed result.

Proof Lemma 5. We prove the result for the upper bounds. From (8), (22), (31)
and (43) we find the expressions

Uµ
t:t+k = µ+ + ρk

µ(µt − µ+),

U b
t:t+k = b+ + ρk

b (bt − b+),

U'
t:t+1 = vU b

t:t+1 exp(Uµ
t:t+1),

Uφ
t =

10

k=1

γivkU b
t:t+k exp(

k0

j=1

Uµ
t:t+j).

It is seen that Uµ
t:t+k depends linearly on µt with a positive coefficient, ρk

µ, so that
Uµ

t:t+k is increasing in µt, such that if µt−1 < µt,

Uµ
t−1:t−1+k = µ+ + ρk

µ(µt−1 − µ+) < µ+ + ρk
µ(µt − µ+) = Uµ

t:t+k.

A similar expression shows that U b
t:t+k is increasing in bt. It follows that U'

t:t+1 and
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Uφ
t are increasing functions of both µt and bt. Thus, for µt−1 < µt and bt−1 < bt, it

follows that U'
t−1:t < U'

t:t+1 and Uφ
t−1 < Uφ

t .

A consequence of U'
t−1:t < U'

t:t+1 is that

't−1 ≤ U'
t−1:t < U'

t:t+1,

which completes the proof.



µ0 = ∆ log x0 and µ−1 = ∆ log x−1. The vector Fx,t includes a set of six dummy



historical data, we rely on standard misspecification tests.
The estimation results and misspecification tests are shown in Table 1. For the

model of the log-changes in earnings, the tests for no autocorrelation of order 1 and
order 1-4 are not rejected with p-values of 0.30 and 0.15. Moreover, the test for no
ARCH of order 1-4 is not rejected with a p-value of 0.22, and normality of the esti-
mated residuals is not rejected with a p-value of 0.48. As the misspecification tests
are not rejected, we conclude that the estimated model is an adequate approxima-
tion of the log-change in earnings over the sample period considered. Importantly,
restricting δx = 0 – that is, assuming that there are no structural breaks in the time-
varying coefficient µt – renders the model inadequate as an approximation of the
earnings process.

For the model of dividends, the tests for no autocorrelation of order 1 and order
1-4 are not rejected with p-values of 0.97 and 0.75, respectively.39 Importantly,
restricting δd = 0 – that is, assuming that there no structural breaks in the time-
varying coefficient bt – renders the model inadequate as an approximation of the
dividends process.

B.3 Empirical Stock-Price Intervals
Given the estimated sequences {µ̂t, b̂}t=1,2,...,T and values for the parameters ρµ,

µ−, µ+, ρb, b−, b+, γ, v and σ2
x, we can compute the empirical counterparts of the

intervals Iµ
t:t+1 in (7), Ib

t:t+1 in (20), and the stock-price interval Ip
t in (41).

We first use the estimates in Table 1 to set the parameters ρµ,





We next calibrate the parameters
&
µ−, µ+, b−, b+

'
such that the empirical stock-

price intervals 1Ip
t match the range of historical stock prices, and such that a suffi-

ciently high percentage of (µ̂t+1, b̂t+1), given the values of (µ̂t, b̂t), lie within the
computed empirical intervals for Iµ

t:t+1 and Ib
t:t+1. Moreover, we set µ+ = 0.047

to ensure that the transversality condition of the theoretical model is satisfied. Not
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(c).

B.6 Definition of the Dummy Variables and Subsample Dummy
Variables

The vector of dummy variables Fx,t is defined as Fx,t =
&
F 1

x,t, F 2
x,t, . . . , F 6

x,t

'0 with:

F 1
x,t = 1 (t = 2008 (4)) , F 2

x,t = 1 (t = 2009 (1)) , F 3
x,t = 1 (t = 2009 (2)) ,

F 4
x,t = 1 (t = 2009 (3)) , F 5

x,t = 1 (t = 2009 (4)) , F 6
x,t = 1 (2010 (1) ≤ t ≤ 2010 (2)) ,

where 1 (·) is an indicator variable that takes the value 1 when the expression in (·)
is true, and zero otherwise.

Before estimating the full model in (B.1)-(B.3), the variables in Sx,t have been
selected using step-indicator saturation (SIS) with Autometrics, see Castle et al.
(2015). The selection is done in the restricted model with !µ = αµ1 = αµ2 = βµ =

0 and with a target size of 0.001 in the Autometrics algorithm. The twelve subsam-
ple dummies in Sx,t selected by Autometrics are given by the expression, Si

x,t =

1 (τx,i ≤ t ≤ τx,i+1 − 1) for i = 1, 2, . . . , 12, where the breakpoints τx,i occur at
observations 1987 (3), 1988 (3), 1992 (1), 2000 (4), 2001 (2), 2001 (4), 2002 (2),



C The Proxy for the Market Sentiment

Based on Mangee (2017) we define the proxy for the market sentiment as follows:
Define the ratio, rt = post−negt

post+negt+1
, where post is the number of positive words and

negt


